Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons.

نویسندگان

  • J K Seamans
  • N Gorelova
  • D Durstewitz
  • C R Yang
چکیده

Dopamine regulates the activity of neural networks in the prefrontal cortex that process working memory information, but its precise biophysical actions are poorly understood. The present study characterized the effects of dopamine on GABAergic inputs to prefrontal pyramidal neurons using whole-cell patch-clamp recordings in vitro. In most pyramidal cells, dopamine had a temporally biphasic effect on evoked IPSCs, producing an initial abrupt decrease in amplitude followed by a delayed increase in IPSC amplitude. Using receptor subtype-specific agonists and antagonists, we found that the initial abrupt reduction was D2 receptor-mediated, whereas the late, slower developing enhancement was D1 receptor-mediated. Linearly combining the effects of the two agonists could reproduce the biphasic dopamine effect. Because D1 agonists enhanced spontaneous (sIPSCs) but did not affect miniature (mIPSCs) IPSCs, it appears that D1 agonists caused larger evoked IPSCs by increasing the intrinsic excitability of interneurons and their axons. In contrast, D2 agonists had no effects on sIPSCs but did produce a significant reduction in mIPSCs, suggestive of a decrease in GABA release probability. In addition, D2 agonists reduced the postsynaptic response to a GABA(A) agonist. D1 and D2 receptors therefore regulated GABAergic activity in opposite manners and through different mechanisms in prefrontal cortex (PFC) pyramidal cells. This bidirectional modulation could have important implications for the computational properties of active PFC networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex.

GABAergic interneurons in prefrontal cortex (PFC) play a critical role in cortical circuits by providing feedforward and feedback inhibition and synchronizing neuronal activity. Impairments in GABAergic inhibition to PFC pyramidal neurons have been implicated in the abnormal neural synchrony and working memory disturbances in schizophrenia. The dopamine D(4) receptor, which is strongly linked t...

متن کامل

Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons.

Dopaminergic modulation of the dorsolateral prefrontal cortex (DLPFC) plays an important role in cognitive functions, including working memory. At optimal concentrations, dopamine (DA) enhances pyramidal cell (PC) firing to increase task-related activity. However, spatial and temporal "tuning" of the persistent firing that underlies this mnemonic activity requires inhibitory control from gamma-...

متن کامل

Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex.

Dopaminergic neurotransmission in the prefrontal cortex (PFC) plays an important role in regulating cognitive processes and emotional status. The dopamine D4 receptor, which is highly enriched in the PFC, is one of the principal targets of antipsychotic drugs. To understand the cellular mechanisms and functional implications of D4 receptors, we examined the impact of D4 receptors in PFC pyramid...

متن کامل

Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex.

Prefrontal cortical dopamine (DA) modulates pyramidal cell excitability directly and indirectly by way of its actions on local circuit GABAergic interneurons. DA modulation of interneuronal functions is implicated in the computational properties of prefrontal networks during cognitive processes and in schizophrenia. Morphologically and electrophysiologically distinct classes of putative GABAerg...

متن کامل

Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor-mediated signalling in rat prefrontal cortical pyramidal neurons.

Emerging evidence has implicated a potential role for 5-HT(4) receptors in cognition and anxiolysis. One of the main target structures of 5-HT(4) receptors on 'cognitive and emotional' pathways is the prefrontal cortex (PFC). As GABAergic signalling plays a key role in regulating PFC functions, we examined the effect of 5-HT(4) receptors on GABA(A) receptor channels in PFC pyramidal neurons. Ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2001